CCIE分享考试重点技术文档-组播双向PIM
本文有乾颐堂助教提供CCIE考试重点知识-组播双向PIM,联系网站客服可获取免费基础课资料。
双向PIM是一种与您可能习惯的不同的多播风格(稀疏,密集和稀疏密集模式)。大多数多播网络都有几个源和许多接收器。双向PIM已经发明用于我们有许多源和接收器相互通信的网络。这方面的一个例子是视频会议,它不仅仅是一个拥有众多听众的来源,而且所有参与者都在相互沟通。
使用具有许多活动源和接收器的PIM稀疏模式的缺点是我们将看到许多可能占用相当多资源的mroute状态条目。使用PIM稀疏模式,RP构建2个条目:
· (*,G)
· (S,G)
当我们使用PIM双向模式时,RP将永远不会构建(S,G)条目,我们只允许共享树的(*,G)条目。PIM路由器永远不会构建朝向源的SPT(最短路径树)。
PIM稀疏模式和PIM双向模式之间的另一个区别在于,稀疏模式流量仅沿共享树向下流动。使用PIM bidir模式流量将在共享树中上下流动!PIM双向也不使用PIM寄存器/寄存器停止机制来向RP注册源。每个源都可以随时开始发送到源。
当多播数据包到达RP时,它们将沿共享树(如果有接收器)向下转发或丢弃(当我们没有接收器时)。但是,RP无法告诉源停止发送多播流量。
在设计方面,您必须考虑将RP放置在网络中的位置,因为它应位于网络中源和接收器之间的中间位置。
最后但并非最不重要的...... PIM双向没有RPF检查。我们将使用DF(指定转发器)来防止循环。此指定转发器是该段上唯一允许向RP发送多播流量的路由器。当每个段只有一个路由器转发多播流量时,就没有循环。
DF将使用以下机制选出:
· 路由器将RP的最低度量标准为 DF。
· 如果度量标准相等,则具有最高IP地址的路由器将成为DF。
足够的理论,我们来看看PIM双向的配置。我将使用以下拓扑来演示此:
首先,我们将在所有路由器上启用单播和多播路由:
R1,R2,R3,R4 and R5:
router ospf 1
network 0.0.0.0 255.255.255.255 area 0
R1,R2,R3,R4 and R5:
ip multicast-routing
下一步是在所有启用PIM的路由器上启用PIM双向:
R1,R2 and R3:
ip pim bidir-enable
现在让我们在所有接口上启用PIM稀疏模式:
R1(config)#interface fastEthernet 0/0
R1(config-if)#ip pim sparse-mode
R1(config-if)#interface fastEthernet 0/1
R1(config-if)#ip pim sparse-mode
R1(config-if)#interface loopback0
R1(config-if)#ip pim sparse-mode
R2(config)#interface fastEthernet 0/0
R2(config-if)#ip pim sparse-mode
R2(config-if)#interface fastEthernet 0/1
R2(config-if)#ip pim sparse-mode
R3(config)#interface fastEthernet 0/0
R3(config-if)#ip pim sparse-mode
R3(config-if)#interface fastEthernet 0/1
R3(config-if)#ip pim sparse-mode
下一步是将R1配置为RP。我们将在所有路由器上使用以下命令:
R1,R2 and R3:
ip pim rp-address 1.1.1.1 bidir
请注意,我添加了“ bidir ”关键字。这是允许R1成为PIM双向RP的必要条件。为了简单起见,我正在静态配置RP。您也可以使用AutoRP或BSR(Bootstrap),不要忘记添加“bidir”关键字。
在我们继续之前,最好检查所有路由器是否将R1视为PIM bidir的DR:
R3#show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s): 224.0.0.0/4, Static, Bidir Mode
RP: 1.1.1.1 (?)
如果您看到每个路由器都看到RP支持Bidir模式,我们可以继续。如果需要,可以检查每个段的DF:
R2#show ip pim interface df
* implies this system is the DF
Interface RP DF Winner Metric Uptime
FastEthernet0/0 1.1.1.1 *192.168.24.2 11 00:01:36
FastEthernet0/1 1.1.1.1 0.0.0.0 11 01:05:08
上面你看到哪个路由器是每个段的DF。*表示此路由器是给定链路的DF。
现在让我们产生一些流量!
R4#ping 239.1.1.1 repeat 9999
Type escape sequence to abort.
Sending 9999, 100-byte ICMP Echos to 239.1.1.1, timeout is 2 seconds:
...
我们将从R4发送一些ping到239.1.1.1。我们还没有任何接收器,但让我们来看看Rendezvous Point:
R1#show ip mroute 239.1.1.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.1.1.1), 00:02:01/00:00:57, RP 1.1.1.1, flags: BP
Bidir-Upstream: Null, RPF nbr 0.0.0.0
Outgoing interface list: Null
上面你看到239.1.1.1的(*,G)条目。B标志告诉我们这是一个PIM双向组。让我们配置R5加入这个组播组:
R5(config)#interface fastEthernet 0/0
R5(config-if)#ip igmp join-group 239.1.1.1
我们的ping仍然从R4运行,我们将看一下RP:
R1#show ip mroute 239.1.1.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.1.1.1), 00:02:05/00:03:02, RP 1.1.1.1, flags: B
Bidir-Upstream: Null, RPF nbr 0.0.0.0
Outgoing interface list:
FastEthernet0/1, Forward/Sparse, 00:01:26/00:03:02
R3的FastEthernet0 / 1链路已添加到传出列表中。在Bidir-Upstream,您会看到Null,这是因为RP是上游路由器。流量从R4向上传输到共享树。我们也可以看看R3,因为它位于我们的路径中间:
R3#show ip mroute 239.1.1.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.1.1.1), 00:04:07/00:03:19, RP 1.1.1.1, flags: BC
Bidir-Upstream: FastEthernet0/0, RPF nbr 192.168.13.1
Outgoing interface list:
FastEthernet0/0, Bidir-Upstream/Sparse, 00:04:07/00:00:00
FastEthernet0/1, Forward/Sparse, 00:04:07/00:03:19
上图中您看到FastEthernet0 / 0接口是上游(朝向RP),FastEthernet0 / 1是出接口(朝向R5)。现在我们将配置R4加入239.1.1.1组播组,以便它们可以相互通信:
R4(config)#interface fastEthernet 0/0
R4(config-if)#ip igmp join-group 239.1.1.1
我将从R4和R5向239.1.1.1发送ping:
R4#ping 239.1.1.1 repeat 9999
Type escape sequence to abort.
Sending 9999, 100-byte ICMP Echos to 239.1.1.1, timeout is 2 seconds:
Reply to request 0 from 192.168.24.4, 4 ms
Reply to request 0 from 192.168.35.5, 8 ms
R5#ping 239.1.1.1 repeat 9999
Type escape sequence to abort.
Sending 9999, 100-byte ICMP Echos to 239.1.1.1, timeout is 2 seconds:
Reply to request 0 from 192.168.35.5, 1 ms
Reply to request 0 from 192.168.24.4, 8 ms
现在我们再来看看RP:
R1#show ip mroute 239.1.1.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.1.1.1), 00:08:39/00:03:19, RP 1.1.1.1, flags: B
Bidir-Upstream: Null, RPF nbr 0.0.0.0
Outgoing interface list:
FastEthernet0/1, Forward/Sparse, 00:08:00/00:03:19
FastEthernet0/0, Forward/Sparse, 00:02:42/00:02:46
现在,您可以在传出列表中看到RP上的两个接口。让我们来看看R3:
R3#show ip mroute 239.1.1.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.1.1.1), 00:09:39/00:03:10, RP 1.1.1.1, flags: BC
Bidir-Upstream: FastEthernet0/0, RPF nbr 192.168.13.1
Outgoing interface list:
FastEthernet0/0, Bidir-Upstream/Sparse, 00:09:39/00:00:00
FastEthernet0/1, Forward/Sparse, 00:09:39/00:02:42
现在我们将FastEthenet0 / 0视为Bidir-Upstream接口,将FastEthernet0 / 1视为传出列表。
思科.华为.Python学习 客服QQ:3240149070
CCNA|CCNP|CCIE|HCIA|HCIP|HCIE
路由交换|安全|DC数据中心|无线|云计算
CCIE考试重点技术文档-组播双向PIM
姓名:
Q Q:
电话:
|